Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»

ТЕНЗОРНАЯ АНАЛИЗИРУЮЩАЯ СПОСОБНОСТЬ В РЕАКЦИИ НЕКОГЕРЕНТНОГО ФОТОРОЖДЕНИЯ ПИ-МЕЗОНОВ НА ДЕЙТРОНЕ

В.В. Гаузштейн (+7 (3822) 701777 Вн.т. 2319, gauzshtein@tpu.ru,), **Б.И. Василишин** (smilefx@tpu.ru), **М.Я. Кузин** (myk6@tpu.ru), **А.Ю. Логинов** (aloginov@tpu.ru), **А.И. Фикс** (fix@tpu.ru, +7 (3822) 701777 Вн.т. 2338)

Публикация: V.V. Gauzshtein, E.M. Darwish, A.I. Fix, et al, Measurement of the T_{20} component of tensor analyzing power for the incoherent π^- meson photoproduction on a deuteron, Nucl. Phys. A 1041 (2024) 122781

Проведены первые измерения тензорной анализирующей способности T_{20} фоторождения отрицательных пи-мезонов на ядре дейтерия с использованием системы мечения фотонов (Photon Tagging System, PTS). Сравнение экспериментальных и смоделированных данных (представлены на рисунке) наглядно свидетельствует, что основные особенности фоторождения пионов на дейтронах хорошо объясняются в рамках модели квазисвободного фоторождения с учетом эффектов перерассеяния конечных частиц. Оставшееся небольшое отклонение может быть связано с двухнуклонными механизмами образования пионов, которые становятся важными в области больших переданных импульсов (см. рисунок 1).

Проведенный анализ позволяет сделать физически важный вывод, что описание фотомезонных процессов на ядрах в терминах точечных пионов и точечноподобной пионнуклонной связи полностью оправдывает себя; нет явной необходимости привлекать новые степени свободы в ядре, помимо пионов, нуклонов и нуклонных изобар. Удивительным является тот факт, что такая картина сохраняется вплоть до довольно больших значений переданного импульса.

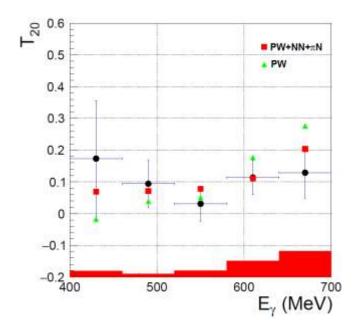


Рисунок 1 — Зависимость компоненты T_{20} тензорной анализирующей способности реакции $\gamma d \to pp\pi^-$ от энергии фотона E_{γ} . Точками показаны данные настоящего эксперимента. Линиями представлены результаты моделирования в приближении плоских волн (треугольники) и приближении плоских волн, включающем перерассеяние в системах πN и NN (квадраты).